Cryptography Lecturer : Michel Goemans 1 Public Key Cryptosystems

نویسنده

  • Michel Goemans
چکیده

The traditional way of creating secret codes (used in various degrees of sophistication for centuries) is that both the sender and the receiver share a secret, called a key. The sender scrambles the message in a complicated way that depends on the key. The receiver then uses the key to unscramble the message. If these codes are constructed properly (something which is surprisingly hard to do), it seems virtually impossible for somebody without the key to decode the message, even if they have many examples of pairs of messages and their encodings to work from in trying to deduce the key. The drawback of this method is ensuring that every pair of people who need to communicate secretly have a shared secret key. Distributing and managing these keys is surprisingly difficult even when these keys are used for espionage. This would be extremely difficult for secret communication over the internet, when you may wish to send your credit card securely to a store you have never before heard of. Luckily, there is another way to proceed. Diffie and Hellman in 1976 came up with a scheme for handling such communications, called a public key cryptosystem. It is based on the assumption that there is a wide class of functions that are relatively easy to compute but extraordinarily difficult to invert unless you possess a secret. According to this scheme, each communicator or recipient, say Bob or B, publishes in a well defined place (a kind of telephone directory) a description of his function, fB from this class; this is Bob’s public key. Bob knows also the inverse of fB, this is his private key. The assumption is that this inverse is extremely difficult to compute if one does not know some private information. Suppose now that someone, say Alice or A, would like to send a message m to B. She looks up Bob’s public key and sends m′ = fB(m). Since Bob knows his own private key, he can recover m = f−1 B (m ′). The problem here is that Bob has no guarantee that Alice sent the message. Maybe someone else claiming to be Alice sent it. So, instead, suppose that Alice sends the message m′ = fB(f −1 A (m)) to Bob. Notice that Alice needs to know Bob’s public key (which she can find in the diretory) and also her known private key, which is known only to her. Having received this message, Bob can look up Alice’s public key and recover m by computing m = fA(f −1 B (m ′)); again, for this purpose, knowledge of Bob’s private key and Alice’s public key is sufficient. Anyone else

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of two Public Key Cryptosystems

Since the time public-key cryptography was introduced by Diffie andHellman in 1976, numerous public-key algorithms have been proposed. Some of thesealgorithms are insecure and the others that seem secure, many are impractical, eitherthey have too large keys or the cipher text they produce is much longer than theplaintext. This paper focuses on efficient implementation and analysis of two mostpo...

متن کامل

QTRU: quaternionic version of the NTRU public-key cryptosystems

In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

Generating Functions Lecturer : Michel Goemans

We are going to discuss enumeration problems, and how to solve them using a powerful tool: generating functions. What is an enumeration problem? That’s trying to determine the number of objects of size n satisfying a certain definition. For instance, what is the number of permutations of {1, 2, . . . , n}? (answer: n!), or what is the number of binary sequences of length n? (answer: 2n). Ok, no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014